

Object Recognition in Egocentric Videos for Assistance of Neuro-Prosthesis Wearer

Philippe PÉREZ DE SAN ROMAN, Jenny BENOIS-PINEU, Daniel CATTAERT, Aymar DE RUGY, Florent PACLET Funded by: PEPS Suivip CNRS-Idex November 14, 2016 Introduction

State of the art

Problem Formulation

LEGO Dataset

Object Candidate Selection

Object Candidate Recognition with a Deep CNN

Conclusion and Perspectives

Introduction

Motivations:

 Amputees: Grasping actions, daily life activities
Neuro-prosthesis: Electromyogram control
Liberty degree: ↑ Amputation, ↑ Degree-of-freedoms, ↓ Electromyogram control signal

What if we can see what the subject sees ?

Visually identify the object-of-interest. \rightarrow Scene camera

But where is it in the subjects view ?

When the subject intents to grasp an object, he looks at it. \rightarrow Eye-tracker

Where is it exactly w.r.t. the prosthesis ?

 \rightarrow Depth camera at the prosthesis to locate it in 3D

Introduction 2

Framework of prosthesis control system:

State of the art

Scene exploration times:

Scene discovery: Sparse eye motions, 240-300 ms
Fixation: Focus of the object-of-interest, 250 ms
Micro-saccades: Small oscillations on the object-of-interest, 6-300 ms¹
Grasping: Motion initiation, 400-900 ms
Distractors Light, motion, other objects, 100-500 ms^{2,3}

Our experiment confirms, even with a few subjects, these times.

²Helene Devillez, Anne Guérin-Dugué, and Nathalie Guyader (2015). "How task difficulty influences eye movements when exploring natural scene images." In: *EUSIPCO*. IEEE, pp. 1536–1540.

 3 D. Villani et al. (2015). "Visual exploration patterns of human figures in action: an eye tracker study with art paintings". In: *Front Psychol* 6, p. 1636.

¹Susana Martinez-Conde et al. (2009). "Microsaccades: a neurophysiological analysis". In: *Trends in neurosciences* 32.9, pp. 463–475.

Object Recognition with Depp CNN

Convolutional Neural Network (CNN):

- Supervised machine learning algorithm
- Inspired by animal brain and visual cortex
- Image $I \rightarrow$ Probability $\widehat{P}(I \mid class C)$

1 layer:

- Convolution, Non-linearity, Max Pooling \rightarrow Feature extraction

More layers (going deeper):

- Abstract the image contents
- $\bullet \ \mathsf{Edges} \to \mathsf{Textures} \to \mathsf{Object} \ \mathsf{parts}$

Example of features computed with a CNN:

Common approach to explore an image:

Full Search: To many proposals, very slow

R-CNN: 2000 object proposals, 42s

Fast R-CNN: 2000 object proposals, 320ms

Region based CNN^{4,5} and **Fast R-CNN**⁶:

⁴J.R.R. Uijlings et al. (2013). "Selective Search for Object Recognition". In: International Journal of Computer Vision 104.2, pp. 154–171.

⁵R. B. Girshick et al. (2014). "Rich fea- ture hierarchies for accurate object detection and semantic segmentation". In: *CVPR*.

⁶Ross B. Girshick (2015). "Fast R-CNN". . In: *CoRR* abs/1504.08083.

Problem Formulation

Problem Formulation

Our problem: Recognize the object-of-interest in the egocentric videos of the scene camera, using by eye-tracking, in the time of an eye-fixation (< 250 ms)

1. Object Localization:

 \rightarrow It it focused by eye-tracking after the scene exploration has been completed

 \rightarrow Fixation is maintained, except if a distractor appears

 \rightarrow One, and only one, "object proposal"

- 2. Object classification:
 - \rightarrow Deep Convolutional Neural Network

LEGO Dataset

Experimental setup

4 Subjects were equipped with:

- The eye-tracker
- The scene camera

Scene setup:

- white background
- white table
- 4 objects out of 8 (in line)

A subject wearing the eye-tracker:

Experiment:

- 1. The subject sits at the table, his eyes are closed.
- 2. We place the objects.
- 3. He is instructed to grasp one as we start the recordings
- 4. He opens his eyes, finds the object, and grasps it.
- 5. We stop the recordings.

The view from the scene camera:

Videos

Content:

Egocentric video, Eye-tracking, Annotation

Number of videos in the LEGO dataset:

By categories for Training, Validation and Testing.

	Categories	Training	Validation	Testing	Total
	Background	90	31	0	121
4	Cone	13	5	4	22
8	Cylinder	4	2	1	7
•	Hemisphere	8	3	3	14
	Hexagonal_Prism	10	4	3	17
	Rectangular_Prism	17	5	6	28
-	Rectangular_Pyramid	10	4	3	17
	Triangular_Prism	17	5	4	26
	Triangular_Pyramid	11	3	4	18
	Total/BGD	90	31	28	149

Object Candidate Selection

Object Candidate Selection

Object Candidate Selection framework:

Problem:

Scene camera 25 Hz

Eye-tracker 50 Hz, missing values (eyes closed, blinking)

Solution:

Spline interpolation: At the time t of a frame Using a time window of δt milliseconds Equation for the computation of the Wooding Map⁷: Normalized Wooding Map:

$$W(I, f, x, y) = \frac{A}{\|W\|_{\infty}} \times \exp \frac{-(x - x_f)^2 - (y - y_f)^2}{2 \cdot \sigma (I, d_f)^2 + \epsilon}$$

Radius adapted by the distance of the fixation point:

$$\sigma(I,d) = rac{A}{d} \cdot rac{width(I)tan(180lpha\pi)}{2tan(eta\pi/180)}$$

 $\alpha=2^\circ$ focal vision radius, $\beta=24^\circ$ camera opening angle, A=1600mm maximum distance.

⁷D.S. Wooding (2002). "Fixation Maps: Quantifying Eye-movement Traces". In: *Proceedings of the 2002 Symposium on Eye Tracking Research & Applications*. ETRA '02. New York, NY, USA: ACM, pp. 31–36. ISBN: 1-58113-467-3. DOI: 10.1145/507072.507078. URL: http://doi.acm.org/10.1145/507072.507078.

Saliency computation 2

Various visualization of the Wooding Map:

Videos Semi-Automatic Annotation

User interface of our annotation software:

Parameters: Time interval threshold category Advantage: Fast Disadvantages: Distractors induce the annotator into error

Patch Extraction and Augmentation 1

Patch Extraction example:

- (1) Bounding box of the object of interest
- (2) Exclusion rectangle
- (3) Background patches candidates.

Patch Extraction and Augmentation 2

Augmentations: Label preserving transformations

Rotations none, 90°, 180°, 270°

Blur: none, 3x3, 5x5, 7x7

Number of image patches extracted:

By category for Training, Validation and Testing

	Categories	Training	Validation	Testing	Total
	Background	123 424	43 024	0	166 448
4	Cone	17 824	6 352	420	24 596
	Cylinder	6 544	2 928	111	9 583
	Hemisphere	13 360	4 016	272	17 648
	Hexagonal_Prism	16 592	5 776	235	22 603
	Rectangular_Prism	24 032	6 816	620	31 468
-	Rectangular_Pyramid	10 736	4 448	308	15 492
	Triangular_Prism	21 168	7 744	396	29 308
	Triangular_Pyramid	16 784	4 976	412	22 172
	Total	250 464	86 080	2 774	339 318

Similar number to ImageNet dataset⁸

⁸O. Russakovsky et al. (2015). ImageNet Large Scale Visual Recognition Challenge.

Object Candidate Recognition with a Deep CNN

Network Architecture: ImageNet⁹

- 5 Convolutional layers: Compute image features.
- 3 Fully connected layers: Classify features in 9 categories

⁹A. Krizhevsky, I. Sutskever, and G.E. Hinton (2012). "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. Pp. 1106–1114.

Network Optimization

Stochastic Gradient Descent: Weight update formula:

$$V_{t+1} = \mu V_t - \gamma \nabla L(D, W_t)$$
$$W_{t+1} = W_t + V_{t+1}$$

Learning rate $\gamma=10^{-4}$ (fixed), momentum coefficient $\mu=0.9$ Training progress:

1 Training loss over iterations, 2 validation accuracy over iteration

Temporal fusion: filter out distractors **Mean fusion** over the patches p_i extracted on the frames of the video V:

$$c(V) = \operatorname{argmax}_{c} \{\sum_{i=1}^{N} s(p_i, c)\}$$

Results

Precision:

Average precision per category (Ap), mean average precision (mAp) 1 Without temporal fusion, 2 with temporal fusion.

Timing of our system:

Compared to an eye-fixation time, and other methods:

	Our method	Eye fixation	Fast R-CNN	R-CNN
Saliency	5 ms			
Classify	8 ms			
Total	13 ms	250 ms	320 ms	42000 ms

Conclusion and Perspectives

We have developed a method that can:

- Select a single candidate object in the subject egocentric view, using eye-tracking.
- Recognize this objects between 8 categories with 65% mAp.
- All of it in 13ms, which is much faster that an eye fixation, and our video frame-rate.

Perspectives:

- Try other CNN.
- Adapt the method to more complex scenarios.
- Study the effect of noise in the training dataset
- Noise robust training method for Deep CNN

Many thanks to:

specially CNRS-Idex grant PEPS-Suivip and the INCIA The students who helped Souad Chaabouni, Marin Gutierrez, Cyril Hatchi, Antoine Pitaud, Mylene Tahar

Thank you for your attention

Any questions ?

Fully connected neuron:

$$\widehat{Y}_n = b + \sum_{i=1}^{L} \sum_{j=1}^{H} \sum_{k=1}^{D} W_{i,j,k}^{(n)} \cdot X_{i,j,k}$$

Parameters to train: Independent between neurons

W: weights *b*: bias

Design choices:

Number of output: Number of neurons in the layer i.e. the top shape

Convolutional layer (Conv)

Convolutional neuron:

$$\widehat{Y}_{i,j,k} = b + \sum_{di=-k_1}^{+k_1} \sum_{dj=-k_2}^{+k_2} \sum_{k'=1}^{D} W_{di,dj,k'}^{(k)} \cdot X_{i+di,j+dj,k'}^{(k)}$$
$$(i,j) \in L \times H$$

Parameters to train: shared between neurons of the same filter depth *k*:

Design choices:

k_1, k_2 :	kernel size
Number of output:	Number of neuron in the layer,
	i.e. depth of the top shape
Stride:	Step size between neurons on L and H
Pad:	Expand input blob on L and H
g:	Group input and output channels in g groups

Max pooling layer:

$$\widehat{Y}_{i,j,k} = \max_{\substack{i' \in [i-k_1, i+k_1]\\j' \in [j-k_2, j+k_2]}} \{X_{i',j',k}\}$$

Design choices:

- k_1 , k_2 : kernel size
- Stride: Step size between neurons on L and H(2)
- Pad: Expand input blob on L and H

Local response normalization:

$$\widehat{Y}_{i,j,k} = X_{i,j,k} / (b + \alpha \sum_{k'=k-n}^{k+n} (X_{i,j,k'})^2)^{\beta}$$

Design choices:

• n: kernel size (5)

Hyper-Parameters:

- α : scaling parameter (10⁻⁴)
- β: exponent (0,75)
- b: (1)

Activation Functions

Threshold:

$$\widehat{Y}_{i,j,k} = egin{cases} 1 ext{ if } X_{i,j,k} > au \ 0 ext{ else} \end{cases}$$

Sigmoid

$$\widehat{Y}_{i,j,k} = rac{1}{1+e^{-X_{i,j,k}}}$$

The Rectified Linear Unit (ReLU)

$$\widehat{Y}_{i,j,k} = max(0, X_{i,j,k})$$

Soft max: Activations \rightarrow probability distribution

$$\widehat{P}_i = e^{X_i} / \sum_{j=1}^N e^{X_j}$$

Loss function

The overall loss over a dataset D is:

$$L(W) = \frac{1}{|D|} \sum_{i=1}^{|D|} E(X_i, I_i) + \lambda r(W)$$

r(W) is an L_2 regularization term

Loss function: for input image X_i with known label I_i : (multinomial logistic loss)

$$E(X_i, \ l_i) = -\frac{1}{N} \sum_{j=1}^{N} log(\widehat{P}_i)\delta(\widehat{l}_i, l_i)$$
$$\delta(l, l_i) = 1 \text{ if } l = l_i, \ 0 \text{ else}$$

Hyper-Parameter:

• λ : Weight decay (0.0005)

Layer	Depth	Туре	Name	Parameters	Top shape
23	8	Soft Max	prob		C
22	8	FC	ip8		C
21	7	Dropout	drop7	ratio = 0, 5	4096
20	7	ReLU	relu7		4096
19	7	FC	ip7	b = 1	4096
18	6	Dropout	drop6	ratio = 0, 5	4096
17	6	ReLU	relu6		4096
16	6	FC	ip6	b = 1	4096
15	5	Max pooling	pool5	$k = 3 \times 3, \ s = 2$	6×6×256
14	5	ReLU	relu5		13×13×256
13	5	Convolution	conv5	$k = 3 \times 3, \ nb = 256, \ pad = 1, \ b = 1$	13×13×256
12	4	ReLU	relu4		13×13×384
11	4	Convolution	conv4	$k = 3 \times 3, \ nb = 384, \ pad = 1, \ b = 1$	13×13×384
10	3	ReLU	relu3		13×13×384
9	3	Convolution	conv3	$k = 3 \times 3, \ nb = 384, \ pad = 1, \ b = 0$	13×13×384
8	2	LRN	norm2	$k = 5 \times 5, \ \alpha = 10^{-4}, \ \beta = 0,75$	13×13×256
7	2	Max pooling	pool2	$k = 3 \times 3, \ s = 2$	13×13×256
6	2	ReLU	relu2		27×27×256
5	2	Convolution	conv2	$k = 5 \times 5, \ nb = 256, \ pad = 2, \ b = 1$	27×27×256
4	1	LRN	norm1	$k = 5 \times 5, \ \alpha = 10^{-4}, \ \beta = 0,75$	27×27×96
3	1	Max pooling	pool1	k = 3x3, s = 2	27×27×96
2	1	ReLU	relu1		55×55×96
1	1	Convolution	conv1	$k = 11 \times 11, \ nb = 96, \ s = 4, \ b = 0$	55×55×96
0	0	Data	data		227×227×3