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Introduction



Introduction 1

Motivations:

Amputees: Grasping actions, daily life activities
Neuro-prosthesis: Electromyogram control
Liberty degree: ↑ Amputation, ↑ Degree-of-freedoms,

↓ Electromyogram control signal

What if we can see what the subject sees ?
Visually identify the object-of-interest.
→ Scene camera

But where is it in the subjects view ?
When the subject intents to grasp an object, he looks at it.
→ Eye-tracker

Where is it exactly w.r.t. the prosthesis ?
→ Depth camera at the prosthesis to locate it in 3D
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Introduction 2

Framework of prosthesis control system:

Eye-Tracker
(2.5D, 50Hz)

Scene Camera
(1080p, 25Hz)

Depth Camera

EMG signal

Object Candidate
Selection

Object Candidate
Recognition

Object Database

Compute depth Match object

Trigger

Poppy arm
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State of the art



Psycho-visual Attention

Scene exploration times:

Scene discovery: Sparse eye motions, 240-300 ms
Fixation: Focus of the object-of-interest, 250 ms

Micro-saccades: Small oscillations on the object-of-interest, 6-300 ms1

Grasping: Motion initiation, 400-900 ms
Distractors Light, motion, other objects, 100-500 ms2,3

Our experiment confirms, even with a few subjects, these times.
1Susana Martinez-Conde et al. (2009). “Microsaccades: a neurophysiological analysis”. In:

Trends in neurosciences 32.9, pp. 463–475.
2Helene Devillez, Anne Guérin-Dugué, and Nathalie Guyader (2015). “How task difficulty
influences eye movements when exploring natural scene images.” In: EUSIPCO. IEEE,
pp. 1536–1540.
3D. Villani et al. (2015). “Visual exploration patterns of human figures in action: an eye tracker
study with art paintings”. In: Front Psychol 6, p. 1636.
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Object Recognition with Depp CNN

Convolutional Neural Network (CNN):
• Supervised machine learning algorithm
• Inspired by animal brain and visual cortex
• Image I → Probability P̂( I | class C )

1 layer:

• Convolution, Non-linearity, Max Pooling → Feature extraction

More layers (going deeper):

• Abstract the image contents
• Edges → Textures → Object parts

Example of features computed with a CNN:
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Object Recognition with Depp CNN 2

Common approach to explore an image:

Full Search: To many proposals, very slow
R-CNN: 2000 object proposals, 42s

Fast R-CNN: 2000 object proposals, 320ms

Region based CNN4,5 and Fast R-CNN6:

4J.R.R. Uijlings et al. (2013). “Selective Search for Object Recognition”. In: International
Journal of Computer Vision 104.2, pp. 154–171.
5R. B. Girshick et al. (2014). “Rich fea- ture hierarchies for accurate object detection and
semantic segmentation”. In: CVPR.
6Ross B. Girshick (2015). “Fast R-CNN”. . In: CoRR abs/1504.08083.
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Problem Formulation

Our problem: Recognize the object-of-interest in the egocentric videos
of the scene camera, using by eye-tracking, in the time of an eye-fixation
(< 250ms)

1. Object Localization:
→ It it focused by eye-tracking after the scene exploration has been
completed
→ Fixation is maintained, except if a distractor appears

→ One, and only one, "object proposal"
2. Object classification:
→ Deep Convolutional Neural Network 7
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Experimental setup

4 Subjects were equipped with:
• The eye-tracker

• The scene camera

Scene setup:
• white background

• white table

• 4 objects out of 8 (in line)

A subject wearing the
eye-tracker:

Experiment:
1. The subject sits at the table, his

eyes are closed.

2. We place the objects.

3. He is instructed to grasp one as
we start the recordings

4. He opens his eyes, finds the
object, and grasps it.

5. We stop the recordings.

The view from the scene camera:
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Videos

Content:
Egocentric video, Eye-tracking, Annotation

Number of videos in the LEGO dataset:
By categories for Training, Validation and Testing.

Categories Training Validation Testing Total
Background 90 31 0 121

Cone 13 5 4 22
Cylinder 4 2 1 7

Hemisphere 8 3 3 14
Hexagonal_Prism 10 4 3 17
Rectangular_Prism 17 5 6 28

Rectangular_Pyramid 10 4 3 17
Triangular_Prism 17 5 4 26

Triangular_Pyramid 11 3 4 18
Total/BGD 90 31 28 149
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Object Candidate Selection



Object Candidate Selection

Object Candidate Selection framework:

Eye-Tracker - 50Hz

Scene Camera - 25Hz

Parser

Decoder

Synchronization

Saliency Com-
putation

Threshold

Extract patch
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Synchronization

Problem:

Scene camera 25 Hz
Eye-tracker 50 Hz, missing values (eyes closed, blinking)

Solution:

Spline interpolation: At the time t of a frame
Using a time window of δt milliseconds
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Saliency computation 1

Equation for the computation of the Wooding Map7:
Normalized Wooding Map:

W (I, f , x , y) = A
‖W ‖∞

× exp −(x − xf )2 − (y − yf )2
2 · σ(I, df )2 + ε

Radius adapted by the distance of the fixation point:

σ(I, d) = A
d ·

width(I)tan(180απ)
2tan(βπ/180)

α = 2◦ focal vision radius, β = 24◦ camera opening angle, A = 1600mm
maximum distance.
7D.S. Wooding (2002). “Fixation Maps: Quantifying Eye-movement Traces”. In: Proceedings of

the 2002 Symposium on Eye Tracking Research & Applications. ETRA ’02. New York, NY, USA:
ACM, pp. 31–36. isbn: 1-58113-467-3. doi: 10.1145/507072.507078. url:
http://doi.acm.org/10.1145/507072.507078.
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Saliency computation 2

Various visualization of the Wooding Map:
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Videos Semi-Automatic Annotation

User interface of our annotation software:

Parameters: Time interval
threshold
category

Advantage: Fast

Disadvantages: Distractors induce
the annotator into
error
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Patch Extraction and Augmentation 1

Patch Extraction example:
(1) Bounding box of the object of interest
(2) Exclusion rectangle
(3) Background patches candidates.
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Patch Extraction and Augmentation 2

Augmentations: Label preserving transformations

Rotations none, 90◦, 180◦, 270◦

Blur: none, 3x3, 5x5, 7x7
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Patch Extraction and Augmentation 3

Number of image patches extracted:
By category for Training, Validation and Testing

Categories Training Validation Testing Total
Background 123 424 43 024 0 166 448

Cone 17 824 6 352 420 24 596
Cylinder 6 544 2 928 111 9 583

Hemisphere 13 360 4 016 272 17 648
Hexagonal_Prism 16 592 5 776 235 22 603
Rectangular_Prism 24 032 6 816 620 31 468

Rectangular_Pyramid 10 736 4 448 308 15 492
Triangular_Prism 21 168 7 744 396 29 308

Triangular_Pyramid 16 784 4 976 412 22 172
Total 250 464 86 080 2 774 339 318

Similar number to ImageNet dataset8
8O. Russakovsky et al. (2015). ImageNet Large Scale Visual Recognition Challenge.
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Object Candidate Recognition
with a Deep CNN



Network Architecture

Network Architecture: ImageNet9

5 Convolutional layers: Compute image features.
3 Fully connected layers: Classify features in 9 categories

9A. Krizhevsky, I. Sutskever, and G.E. Hinton (2012). “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a
meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States. Pp. 1106–1114.
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Network Optimization

Stochastic Gradient Descent:
Weight update formula:

Vt+1 = µVt − γ∇L(D, Wt)
Wt+1 = Wt + Vt+1

Learning rate γ = 10−4 (fixed), momentum coefficient µ = 0.9
Training progress:
1 Training loss over iterations, 2 validation accuracy over iteration
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Temporal fusion

Temporal fusion: filter out distractors
Mean fusion over the patches pi extracted on the frames of the video V :

c(V ) = argmax
c
{

N∑
i=1

s(pi , c)}
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Results

Precision:
Average precision per category (Ap), mean average precision (mAp)
1 Without temporal fusion, 2 with temporal fusion.
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Results

Timing of our system:
Compared to an eye-fixation time, and other methods:

Our method Eye fixation Fast R-CNN R-CNN
Saliency 5 ms
Classify 8 ms
Total 13 ms 250 ms 320 ms 42000 ms
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Conclusion and Perspectives

We have developed a method that can:

• Select a single candidate object in the subject egocentric view, using
eye-tracking.

• Recognize this objects between 8 categories with 65% mAp.
• All of it in 13ms, which is much faster that an eye fixation, and our

video frame-rate.

Perspectives:

• Try other CNN.
• Adapt the method to more complex scenarios.
• Study the effect of noise in the training dataset
• Noise robust training method for Deep CNN
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Thank you for your attention

Any questions ?



Fully Connected layer (FC)

Fully connected neuron:

Ŷn = b +
L∑

i=1

H∑
j=1

D∑
k=1

W (n)
i,j,k · Xi,j,k

Parameters to train: Independent between neurons

W : weights b: bias

Design choices:

Number of output: Number of neurons in the layer
i.e. the top shape



Convolutional layer (Conv)
Convolutional neuron:

Ŷi,j,k = b +
+k1∑

di=−k1

+k2∑
dj=−k2

D∑
k′=1

W (k)
di,dj,k′ · Xi+di,j+dj,k′

(i , j) ∈ L× H

Parameters to train: shared between neurons of the same filter depth k:

W : weight b: bias

Design choices:

k1, k2: kernel size
Number of output: Number of neuron in the layer,

i.e. depth of the top shape
Stride: Step size between neurons on L and H
Pad: Expand input blob on L and H

g : Group input and output channels in g groups



Max pooling layer (Pool)

Max pooling layer:

Ŷi,j,k = max
i′∈[i−k1, i+k1]
j′∈[j−k2, j+k2]

{Xi′,j′,k}

Design choices:

• k1, k2: kernel size
• Stride: Step size between neurons on L and H (2)
• Pad: Expand input blob on L and H



Local response normalization (LRN)

Local response normalization:

Ŷi,j,k = Xi,j,k / ( b + α

k+n∑
k′=k−n

(Xi,j,k′)2 )β

Design choices:

• n: kernel size (5)

Hyper-Parameters:

• α: scaling parameter (10−4)
• β: exponent (0, 75)
• b: (1)



Activation Functions

Threshold:

Ŷi,j,k =
{
1 if Xi,j,k > τ

0 else

Sigmoid
Ŷi,j,k = 1

1 + e−Xi,j,k

The Rectified Linear Unit (ReLU)

Ŷi,j,k = max(0, Xi,j,k)



Soft Max

Soft max: Activations → probability distribution

P̂i = eXi /

N∑
j=1

eXj



Loss function

The overall loss over a dataset D is:

L(W ) = 1
|D|

|D|∑
i=1

E (Xi , li) + λr(W )

r(W ) is an L2 regularization term

Loss function: for input image Xi with known label li :
(multinomial logistic loss)

E (Xi , li) = − 1
N

N∑
j=1

log(P̂i)δ(̂li , li)

δ(l , li) = 1 if l = li , 0 else

Hyper-Parameter:

• λ: Weight decay (0.0005)
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ImageNet architecture details

Layer Depth Type Name Parameters Top shape
23 8 Soft Max prob C
22 8 FC ip8 C
21 7 Dropout drop7 ratio = 0, 5 4096
20 7 ReLU relu7 4096
19 7 FC ip7 b = 1 4096
18 6 Dropout drop6 ratio = 0, 5 4096
17 6 ReLU relu6 4096
16 6 FC ip6 b = 1 4096
15 5 Max pooling pool5 k = 3x3, s = 2 6x6x256
14 5 ReLU relu5 13x13x256
13 5 Convolution conv5 k = 3x3, nb = 256, pad = 1, b = 1 13x13x256
12 4 ReLU relu4 13x13x384
11 4 Convolution conv4 k = 3x3, nb = 384, pad = 1, b = 1 13x13x384
10 3 ReLU relu3 13x13x384
9 3 Convolution conv3 k = 3x3, nb = 384, pad = 1, b = 0 13x13x384
8 2 LRN norm2 k = 5x5, α = 10−4, β = 0, 75 13x13x256
7 2 Max pooling pool2 k = 3x3, s = 2 13x13x256
6 2 ReLU relu2 27x27x256
5 2 Convolution conv2 k = 5x5, nb = 256, pad = 2, b = 1 27x27x256
4 1 LRN norm1 k = 5x5, α = 10−4, β = 0, 75 27x27x96
3 1 Max pooling pool1 k = 3x3, s = 2 27x27x96
2 1 ReLU relu1 55x55x96
1 1 Convolution conv1 k = 11x11, nb = 96, s = 4, b = 0 55x55x96
0 0 Data data 227x227x3


